Predictive and preventive maintenance for Pumps

C. Dale Alleyne P.Eng
Alleyne Machinery Consulting Inc.

Two Main Causes of Pump Failure

Seals

Bearings

• These Account for 80% + of pump Failures

Four areas to Concentrate PM Programme

- Vibration
- Lubrication
- Operation
- Maintenance

Vibration

- Three Categories of Pump
 - Large Unspared Pumps
 - Smaller and Spared Pumps
 - Very small or unimportant Pumps

Large Unspared Pumps

Continuous monitoring via a permanent system.

Reasons:

Want to catch problems early as may have an effect on Production - big \$\$\$

If machine fails, the cost of repair is very high thus the cost of Monitoring system easily Justified

Consider pumps 750 kW and larger (unspared) 1000kW and larger (spared)

Criteria

- Radial Bearings
 Alarm at 50-60% of bearing clearance
 Trip at Bearing clearance
- Thrust bearings
 Alarm at 50% of Babbitt
 Trip at 100% of Babbitt + .25mm (.010")
 Dual Voting
- Other alarms/ trips within capability of Monitoring System

Bearing Temperatures

Large unspared pumps should have RTDs in bearings

Set alarm at 10-20°C over normal

Trip depending on Plant Philosophy

Smaller Spared Pump

- Use a Walk About Hand Held programme
- Set frequency of checks based on site MTBM (monthly, 2 months, 3 months)
- Need to set a schedule for running the spare Pump

1 day every month, 1 day every 2 months, 50/50

Very Small or Unimportant Pumps

Not included as part of a vibration programme

What We Are Looking For

- An increase in vibration level (sudden or Trending)
- An indication from readings as to the Cause of Vibation

Criteria

 Well Balanced and aligned pump should run at 1 mm/sec.

 Should consider removal for correction at levels above 8 mm/sec

Use spectral analysis to determine cause

Lubrication

Grease

Self Contained Bath with ring or Slinger

Oil Mist

Circulating or pressurized Systems

Grease

Sealed for Life

Re-greasable

Re-Greasable bearings

- Need to be installed correctly
 One shield only on inboard side, Grease passages both sides of Bearing cavity.
- Grease flushed on Regular intervals say 3 months. Outlet passage open, add new grease till new grease is seen coming out of outlet.

Self Contained Bath with ring or Slinger

- Need to monitor level
- Need to change oil periodically
- Oil change in conjunction with running of Spare Pumps
- No oil analysis required (not economic)

Oil Mist

- Clean cool constant supply
- No changing of oil required
- Provides best environment for bearings and thus longest life.
- System may be costly to install

Circulating or pressurized Systems

- Need to monitor Oil system for:
 Level, Pressure, Temperature and Filter dP
- Need to test oil Periodically
 Test for Viscosity, Metal, dirt and water

Operation

Pump Performance

Mechanical Seal Auxiliaries

Pump Performance

Performance test done periodically

Verify Pump on curve
Ensure suction screen not plugged
Ensure no internal wear or damage

Seal Auxiliaries

- Check that flush lines are flowing
- Steam quenches are operating and at the right rates
- Seal pot levels are correct
- Done daily by Operators (training)

Maintenance

- Ensure all fits and tolerances are to OEM std.
- Take care in mounting Rolling Element Bearings (Temperature <120°C)
- Ensure rotor is well balanced to API 4W/N in-oz or 6350W/N gm-mm
- Do a Precise alignment (.002" or .05mm TIR)
 Use Laser tools

Training

Important that Operators and Millwrights be
 Trained if we expect high pump Reliability

Operators: Pump operation, Seal operation (What to do & what not to do)

Millwrights: Vibration analysis, Alignment,
 Lubrication Maintenance techniques